新型コロナウイルス (COVID-19) 2019年

西アフリカエボラ出血熱(EHF) 2014年 新型インフルエンザ(H1N1亜型 A/H1N1)2009年 中東呼吸器症候群(MERS)2012年 重症呼吸器症候群(SARS)2003年

患者搬送時における 感染防止・除染マニュアル

2020年2月28日 第6版

マスク等デスポ製品再利用マニュアル追記一般向けマスク再利用除染方法追記(小型オゾン機器)

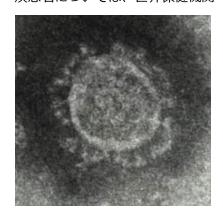
当マニュアルは、感染症流行時における当社オゾン製品の活用を目的とした対応マニュアルです。 当社製品仕様を基準とし、消防・救急など現場機関と共同で制作しています。

ご利用にあたっては、医療・消防・救急・警察・自衛隊など各機関を対象としています。 尚、新型コロナウイルス(COVID-19)のオゾン殺菌消毒効果は実証されておりません。

当社は薬事法を遵守しつつ、公衆衛生に寄与する為に製品使用マニュアルとして管理しています。

株式会社タムラテコ

社外秘資料 当書類の取り扱い注意


はじめに

当マニュアルは、新型コロナウイルス、エボラウイルス、新型インフルエンザなど 各種感染症による集団感染が発生した場合の対処方法を マニュアル化し、当社製品を使用した除染方法を公開します。

※当資料は、2014年に発生したエボラウイルスによるエボラ出血熱のパンデミックを想定し制作しておりますが、MERS・SARS、2019年からの新型コロナウイルス(COVID-19)など他のウイルス性感染症への除染・殺菌分解にも適用できると仮定しています。

新型コロナウイルスとは?

2019年新型コロナウイルス(SARS-CoV-2、WHOによる暫定名は2019-nCoV)によって発症するウイルス性呼吸器疾患である。人獣共通感染症であり、2019年12月から中華人民共和国湖北省武漢市を感染源とした流行が拡大した際に初めて検出され、新興感染症となった。疾患名については、世界保健機関(WHO)が2020年2月11日にCOVID-19(コビッド・ナインティーン)

症状として、発熱、乾いた咳、呼吸困難などがある。 2020年2月現在、確立された治療法はなく、症状の緩和や 心肺機能の温存に焦点が当てられて治療されている。

コロナウイルスの特徴として、エンベロープ (ウイルス表面の脂質性の膜) 上にコロナ (王冠) のような タンパク質の突起を持つことが特徴で、これが名前の由来にもなっている 1本鎖のRNAウイルスである。

ウイルスにはエンベロープを持つものと持たないものがあるが、コロナウイルスを含めエンベロープを持つウイルスはアルコールで失活するという特徴と、変異を起こしやすいという特徴がある。

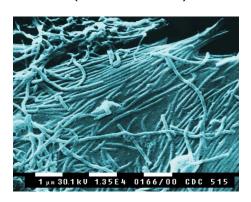
コロナウイルスは、一般的な風邪をひき起こすウイルスでもあるが、上記のように変異を起こしたり、 動物界のウイルスがヒトに感染したりして重大な被害を与えることがある。

2002年に中国広東省から発生したSARS、2012年に中東地域を中心に発生したMERSなどもコロナウイルスの一種と考えられている。

なお、現在のところ、"SARS-CoV2"はヒトからヒトへ感染することが分かっており、中国への渡航者やその接触者と明確な接点がない人も感染が確認されている。

感染経路は主に飛沫感染と接触感染(感染者の咳やくしゃみによって飛散した唾液や痰などに含まれるウイルスを飲み込んだり、触れたりすることによって感染すること)で、空気感染の可能性は少ない。

また感染してから症状が現れるまでの期間は3~14日ほどとされており、 その間も感染を広げる可能性も示唆されている。



補足資料 西アフリカエボラ出血熱(EHF)

※当資料は、2014年に発生したエボラウイルスによるエボラ出血熱のパンデミックを想定し制作しておりますが、MERS・SARS、2019年からの新型コロナウイルス(COVID-19)など他のウイルス性感染症への除染・殺菌分解にも適用できると仮定しています。

エボラウイルスとは?

エボラウイルス属 (Ebola virus) とは、モノネガウイルス目フィロウイルス科に属するウイルスの1属。 ザイールエボラウイルス (Zaire ebolavirus) を模式種とする5種を含む。エボラ出血熱の病原体である

特徴

エボラウイルス属のウイルスは、症状が確認されていないレストンエボラウイルスを除いて ヒトに対する感染力が強く、致死率も高く、有効な治療法もワクチンも存在しない事から、 エボラウイルス属はバイオセーフティーレベルで最高レベルの4に指定され、扱われる施設は限られている。

日本においては、エボラ出血熱は感染症の予防及び感染症の患者に対する医療に関する法律の 1類感染症に指定されており、病原体としてはエボラウイルス属の種全てが 指定されている。感染例の全件が直ちに届出を必要とする。これは病原体であるエボラウイルス属の 検出がない場合でも、症状や所見から感染が疑われる場合も含まれる事がある。

初期症状は他の感染症でも頻繁に見られ、最初の数日で患者がエボラウイルス属に感染しているのを 見極めるのは困難である。

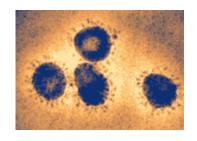
なお、出血熱の名の由来である外部への出血は一部の患者にしか見られない。

接触感染

・エボラウイルスに感染した患者に接触、または患者が触れた物質を間接的に触れることによる 体液の接触によって感染する。

飛沫感染

- ・患者の体液や吐物が飛び散り、その飛沫を吸い込む
- ・便や吐物を不用意に始末したときに発生した飛沫を吸い込む



補足資料 重症急性呼吸器症候群(SARS)

※当資料は、2014年に発生したエボラウイルスによるエボラ出血熱のパンデミックを想定し制作しておりますが、MERS・SARS、2019年からの新型コロナウイルス(COVID-19) など他のウイルス性感染症への除染・殺菌分解にも適用できると仮定しています。

SARS(重症急性呼吸器症候群)とは?

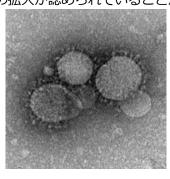
重症急性呼吸器症候群(Severe Acute Respiratory Syndrome; SARS(サーズ))は、SARSコロナウイルスにより引き起こされる感染症。新型肺炎(非典型肺炎、中国肺炎、Atypical Pneumonia)とも呼ばれた。 2002年11月(広州市呼吸病研究所は7月と発表)に中華人民共和国広東省で発生し、2003年7月に 新型肺炎制圧宣言が出されるまでの間に8,069人が感染し、775人が死亡した

特徴

新コロナウイルスにより感染/発病する。

WHOのFAQによると、おもに飛沫感染によって広がる。飛沫感染とは空気感染ではなく、咳やくしゃみで飛んだSARS患者の唾液を吸い込むことによる感染である。飛沫は大きいため、飛ぶ距離は通常1メートル以内。しかし、SARSは空気や汚染された物を介してもっと広範囲に広がる可能性もある。

普通の風邪ウイルスも飛沫感染によって広がる。空気感染によって広がるウイルスには、麻疹ウイルスがある。通常のコロナウイルスは体外で3時間以上生き延びるが、SARSコロナウイルスは乾燥したプラスチック上で24時間以上生存することが確認された


感染経路の調査結果によると、ごく一部の患者が多数の人にうつしたとみられ、このような患者はスーパースプレッダーと呼ばれているが、その理由を含む感染の仕組みは解明されていない。 通常の患者は1~2人に感染させるが、スーパースプレッダーは20人以上にうつしていた。

追記資料 中東呼吸器症候群(MERS)

※当資料は、2014年に発生したエボラウイルスによるエボラ出血熱のパンデミックを想定し制作しておりますが、MERS・SARS、2019年からの新型コロナウイルス(COVID-19) など他のウイルス性感染症への除染・殺菌分解にも適用できると仮定しています。

MERS(中東呼吸器症候群)とは?

中東呼吸器症候群(英語: Middle East respiratory syndrome, MERS マーズ)とは MERSコロナウイルスにより引き起こされる感染症。2012年に、中東へ渡航歴のある症例から発見された 新種のコロナウイルスによる感染症であり、ロンドンで発見された。2015年には韓国で感染例 および、感染の拡大が認められていることから世界保健機関(WHO)は「緊急の注意を喚起する警告」を発した

特徴

2015年6月現在、中東地域及び韓国で感染拡大中の新型コロナウイルスである。 肺炎(異型であるので診断に注意が必要)を主症状としており、死亡率が40-50%前後と非常に高い。 2002-03年に流行したSARS(サーズ)コロナウイルスとは類似しているものの異なる種類であり SARSの死亡率は約9%前後であった。

2015年6月現在、感染者は1200人を越えており、死亡者は450人近くに上っている。

手洗い、マスクの装着、ドアノブやスイッチやハンドルなどの人の触る所の消毒などが予防となる。 また、ウイルスの付着しやすいマスクの表面には触らないよう注意する必要がある。

また、病人との接触は控えた方が良い。病院における医療従事者・家族・見舞い客への感染が多い。また、公共交通機関においても密接接触(2m以内での接触)が危険となる。 航空機などではサーモグラフィーによる体表温度スクリーニングが行われているが、韓国でのMERSの例では MERS初期の発熱で38度以上の体温となることはそれほど多くなく限界がある。 家庭内でも密接接触による感染が起こりうる。

また、病人の排泄物からの感染に気をつける必要がある。香港でのSARSの例ではスーパースプレッダーによって、ホテルや団地でも密接接触の範囲を越えた大きな感染が起きている(メトロポールホテル9階、アモイガーデンE棟)

メトロポールホテル9階での大きな感染の原因は、病人のトイレを清掃した器具で部屋の掃除をしたこととされるため、清掃器具の消毒に気をつける必要がある。

フランスのMERS院内感染の例でも、排泄物等を経由した感染の可能性が報告されている。

考察の根拠

当マニュアルは、エボラウイルスがインフルエンザウイルスと構造が酷似しておりウイルス系の除菌除染はオゾンが得意とすることから立てた当社独自の仮説です

※当資料は、2014年に発生したエボラウイルスによるエボラ出血熱のパンデミックを想定し制作しておりますが、MERS・SARS、2019年からの新型コロナウイルス(COVID-19)など他のウイルス性感染症への除染・殺菌分解にも適用できると仮定しています。

東洋経済

日本人看護師が現地で見たエボラの真実

命がけの覚悟で患者と向き合った1カ月

藤尾 明彦 : ニュース編集部 記者

2014年10日27日

防護服は慣れたとしても、脱ぎ着するのに10分弱はかかります。軽いですが密閉しているので、サウナの中にいるような蒸し暑さです。看護行為は1回1時間が体力の限界で、それを1日2~3回行います。病棟外ではカルテを作成するなど事務作業をします。

一作業ごとに塩素水で消毒

ゴーグルが最ると点滴の際などに医療事故が起きかねないので、そういう時はいったん中止します。夢中になると防護服がずれて肌が露出することもあるので、必ず2人一組で看護し、互いにチェックし合います。また一作業ごとに塩素水で消毒します。看護する側も命がけで、凡ミスも許されません。

ECN.

防護服を美た大海さん。看護山仕りミスを許されたい

エボラ感染「ずれた眼鏡を上げた時に」 回復の看護師

朝日新聞デジタル 10月23日(木)8時0分配信

記者会見でエボラ出血熱に感染した当時の状況を身ぶりを交えて を当時の状況を身ぶりを交えて・ るギニア人看護師パシエンシア・ メルガルさん=20日、マドリー ド市内の病院、渡辺志帆撮影


西アフリカのリベリアで患者の手当て中にエボラ出血熱に 感染し、その後、現地で回復したギニア人の女性看護師が 20日、滞在中のスペインで会見し、自ら感染した経緯や感 染拡大の背曇について語った。

スペインに本部を置くカトリック系団体のシスターでもある看護師パシエンシア・メルガルさん(47)は、リベリアの首都モンロビアの病院でエボラ患者の手当てに従事していた8月、自らも感染・発症した。

この病院では7月以降、工ボラ患者が急増。メルガルさんは、高い気温の中で患者の手当て中、汗でずり落ちてきた眼

鏡を押し上げようと、手袋をした手で顔に触れた。「あのとき目や鼻から感染したと思う。当時は看護師も患者に直接触れてはいけないという程度の知識しかなく、身を守ろうにも十分な 装備がなかった」と振り返った。

朝日新聞社

ファビピラビル(英語: Favipiravir)は、 富山大学医学部の白木公康教授と 富士フイルムホールディングス傘下の富山化学工業が 共同研究で開発したRNA依存性RNAポリメラーゼ阻害剤

2014年夏から、インフルエンザウイルスと構造が 似ているエボラ出血熱ウイルスの治療にこの薬が 有効ではないかという説が持ち上がり、富山化学の 親会社である富士フイルムホールディングス、並びに 同社の提携先である米国のメディベクター

(Medivector) 社が、米国内で治験を行う意向を 示した。2014年10月20日、富士フイルム株式会社は、 エボラ出血熱患者への投与拡大に備え、「アビガン錠」を エボラ出血熱対策として海外での使用を目的とした 追加生産を決定した。

フランスは、2014年10月21日、アビガンの臨床試験を 開始すると発表した

オゾンについて 1 特徴と活用

1840年にクリスチャン・シェンバインによって発見されたオゾンは、酸素分子と酸素原子が結合して 1分子を作っている気体(02+0=03)です。

フッ素に次いで酸化力が強く、塩素に比べて約6~7倍の殺菌力を持ち、脱臭力、漂白力、藻類の不活性化、農薬分解作用、有機物の除去等、さらに2次的効果で鮮度保持や害虫忌避の様々な有益効果を持っています。

オゾンの特徴

自然由来で原料不要

酸素と家庭用電源で作られるオゾンは原料が不要です 備蓄や使用期限が定められた薬品と違い、非常に手軽です。

残留性が無く、後処理も不要

強力な酸化力で除菌・消臭に分解反応後は酸素に戻りますので、残留性は 全くありません。もちろん後処理も不要です

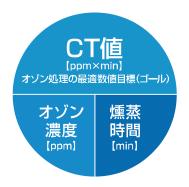
安全性

どの物質もそうですが、無制限な濃度や量では真水ですら人体には有害です。 オゾンも長く人体には有害とされてきましたが、1日8時間、1週間で 40時間働く場合の環境基準として0.1ppm以下と定められており、 そのような超高濃度環境は、業務用の 大型高機能製品で実現できる濃度であり、弊社製品は安全にコントロール されています。

オゾン水なども直接飲んでも安全であり、うがいや手洗いなどに活用されています。

以上のメリットから、2012年度から全国の消防本部における 新型インフルエンザなどによるパンデミック対策を オゾンで行うと決定し、弊社製品が全国240の消防本部に導入

されています。



| オゾン除染の可視化 CT値の概念 | 各種オゾンガスの除菌CT値一覧

CT値とは…

殺菌・不活性効果を示す指標として国際的に認められているもので、ガス濃度と時間の積(濃度「ppm」 ×時間「min」)を表しており、CT値が高いほどその効果は増加し、逆にCT値が低いほどその効果は低下します。

■低濃度オゾンガスによる一般細菌の除菌効果

菌株	未処理の菌数	オゾン処理後の菌数	除菌効果	オゾン処理条件
大腸菌	1×10°	72	99.99	
黄色ブドウ球菌 N20	5×10°	57	99.98	オゾン濃度 1ppm
黄色プドウ球菌 RN2677	5×10°	45	99.99	処理時間 60分
化膿レンサ球菌	3×10⁵	0	100	

昭和薬科大学微牛物研究室データ参考

■噴霧吸入したBCGTokyo株に対する殺菌効果

2噴霧吸入させたBCGTokyo株は、「オゾン」の試験ではいずれの実験区分でも菌が検出されなかった。陽性対照群との比較では、少なくとも(空中浮遊状態の抗酸菌を想定した)10°cfu/min.の噴霧菌量に対して、本装置は完全な除殺菌効果を示した。

実験	BCGTokyo株の	7H10寒天平板培地上での検出菌数			
区分	噴霧菌量と時間	オゾン	陽性対照群		
1	4.2×10 ² cfu/min.	0	41		
2	2.1×10^{2} cfu/30sec.	0	22		
3	4.2×10¹cfu/min.	0	2		
4	2.1×10¹cfu/30sec.	0	0		
5	4.2×10°cfu/min.	0	0		
6	2.1×10°cfu/30sec.	0	0		

(財)結核予防会 結核研究所

■オゾンガス除菌データ

		ウイルス・細菌	除菌方法	CT値(ppm×min)	死滅率(減少率)(%)				
1	<u>-</u>	大腸菌	ガス	60	99.99				
2	般細	Staphylococcus pyogenes(化膿レンサ菌)	ガス	60	100				
3	菌	Staphylococcus aureusIFO 12732(化膿レンサ菌)	ガス	24	100				
4	新	型インフルエンザ(H1N1)	ガス	18	99.7				
⑤	新	型インフルエンザ(H5N1)	ガス	60	100				
6	N	orevirus(ノロウイルス)	ガス	72	100				
7	Bad	cillus cereusIF013494(セレウス菌)	ガス	24	100				
8	Vibio ParahaemolyticusIF012711(腸炎ビブリオ)		ガス	24	100				
9	Salr	monella typhimuriun IFO14193(サルモネラ菌)	ガス	24	100				
100	硫	化水素	ガス	28	100				

- ※各検証機関
- ①②昭和薬科大学微生物研究室
- ④北里大学ウイルス科
- ⑤厚生労働省及び消防庁
- ⑥ビジョンバイオ株式会社
- 378財団法人日本食品分析センター
- ⑨岡山工業技術センター
- ⑩和歌山市消防本部試験結果

■オゾンガス除染目安

【各種ウイルス・細菌の目安】

大腸菌・黄色ブドウ球菌(MRSA)・緑濃菌・ インフルエンザウイルス・ベスト・野兎病菌・ コクシジオイデス真菌・エボラ・天然痘ウイルス等

90%以上除染目安CT値	25
99%以上除染目安CT値	50
99.9%以上除染目安CT値	60

⁽注)除染室内環境湿度は60%以上が望ましい。

【除染CT值60処理時間目安】

密閉空間(湿度60%以上、気温20℃)にてBT-082を活用の場合オゾン濃度0からのスタート

10m²	10分
20m²	20分
30m²	30分

[※]BT-082推奨空間は30㎡以内で気密性が高い空間。また、CT値60の処理時間(到達時間)は環境等(汚れ・気密性・気温・湿度)の条件により異なります。

オゾン除染の可視化 CT値の概念 各種オゾン水の除菌CT値一覧

■オゾン水除菌データー

- 厚生労働省データ

微生	物の種類	水中オゾン濃度 ppm(mg/ℓ)	微生物濃度 (個別/ml)	温度 (℃)	ph	接触時間	死滅率 (%)	オゾン水 CT 値
般細菌	大腸菌	0.96	10 ^⁵ cells	21	7	5秒	100	0.08
菌	ブドウ球菌	1.08	10cells	21	7	5秒	100	0.08
緑膿	菌	1.01	10 ^⁵ cells	21	7	5秒	100	0.08
※ (#	吉核菌)·枯草菌	0.3~0.5	10 ^⁵ cells	20	6. 5	30秒	99.9	0.15~0.25
イン	フルエンザウイルス	0.96	10 ⁵⁰ EID50	21	7	5秒	100	0.08
クロ	ストリニューム	0.96	10 ^⁵ cells	21	7	5秒	100	0.08
パー	フルンジェンス	0.96	10 ^⁵ cells	21	7	5秒	100	80.0
鶏脳	脊髄炎ウイルス	0.72	10 EID50	20	7	5秒	100	0.06
犬伝	染性肝炎ウイルス	1.2	10 ¹⁵ EID50	21	7	5秒	100	0.09
犬パ	ルボウイルス	0.96	10 ²⁵ TCID50	21	7	5秒	100	0.08
鶏コ	クシジュウム	1.92	約3×10cells	20	7	30秒	100	0.9
カビ		0.3~0.5	10 ⁵ cells	20	6.5	19秒	99.9	0.09~0.16
酵母		0.3~0.5	10 ⁵ cells	20	6.5	90秒	99.9	0.45 ~0.75

[※]結核菌は国立結核予防結核研究所のデータに基づくものです。

■オゾン水除染目安 -

物質名	CT値	1 ppm (mg/Ձ)	1.5ppm (mg/l)	2ppm (mg/l)	2.5ppm (mg/ℓ)	4ppm (mg/2)	死滅率
炭疽菌	6~10	6~10分	4~6.6分	3~5分	2.4~4分	1.5~2.5分	99.9%
大腸菌	0.5~10	30~60秒	24~40秒	18~30秒	14~24秒	9~15秒	100%
ブドウ球菌	0.5~10	30~60秒	24~40秒	18~30秒	14~24秒	9~15秒	100%
インフルエンザウイルス	0.5~10	30~60秒	24~40秒	18~30秒	14~24秒	9~15秒	100%
ペスト菌	0.5~10	30~60秒	24~40秒	18~30秒	14~24秒	9~15秒	100%
天然痘ウイルス	0.5~10	30~60秒	24~40秒	18~30秒	14~24秒	9~15秒	100%

[※]上記数値は、アメリカCDC及び厚生労働省にもとづいて算出

[※]生物剤(菌、ウィルスは測れないので)に対してはCT値の数値を目標にオゾン水濃度を確認して決められた秒・分数以上のオゾン水を接触させる。

オゾン(ガス・水)と他の薬剤との 効果比較

● オゾンガスデータ

■ガス除染の特性・

●非耐熱性・非耐水性器材への 適用が可能である。

●浸透性・拡散性に優れている。 ●耐性菌が発生しない。

(防衛省データ)

■ガス除染方式の比較-

項目	過酸化水素	オゾン	酸化エチレン	ホルムアルデヒド	二酸化塩素
除染性 (芽胞菌に対する性能)	0	0	0	0	0
除染性 (化学剤に対する性能)	0	0	Δ	0	0
器材への影響	0	0	0	0	×
人体への影響	Δ	Δ	Δ	× (発がん性)	Δ
安全化処理 (処理時間)	0	0	× (処理時間大)	× (処理時間大)	0
総合評価	0	0	×	×	×

゚゚゚゚゚゚オゾン水デ・

■オゾン水と消毒剤との比較資料

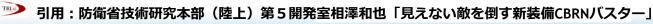
		消毒效					対象微生物										
	消毒剤		傷	台療						,					ウイ	ルス	
環境	金属	非金属	手指•皮膚	粘膜	排泄物	消毒剤	一 般細菌	M R S A	セパシア等	トレポネーマ	結核菌	真菌	芽胞菌	中間サイズ	小型サイズ	H I V	H B V
0	Δ	Δ	0	0	×	オゾン水	0	0	0	0	0	0	0	×	0	0	(
Δ	0	0	×	×	0	ステリハイド	0	0	0	0	0	0	Δ	0	0	0	(
Δ	Δ	Δ	×	×	×	ホルマリン	0	0	0	0	0	0	Δ	0	0	0	0
Δ	×	0	Δ	Δ	Δ	次亜塩素酸ナトリウム	0	0	0	0	\triangle	0	Δ	0	0	0	
Δ	0	0	0	×	×	消毒用エタノール	0	0	0	0	0	0	×	0	Δ	0	
×	×	×	0	×	×	ウエルパス	0	0	0	0	0	0	×	0	Δ	0	
Δ	0	0	0	×	×	イソプロパノール	0	0	0	0	0	0	×	0	×	0	
×	×	×	0	0	×	ポピドヨード	0	0	0	0	0	0	Δ	0	0	0	L
×	×	×	0	0	×	プレポダイン ソリューション	0	0	0	0	0	0	Δ	0	0	0	L
×	×	×	0	×	×	希ヨードチンキ	0	0	0	0	0	0	Δ	0	0	0	
Δ	Δ	Δ	Δ	×	0	フェノール	0	0	0	0	0	Δ	×	Δ	×	×	
Δ	Δ	Δ	Δ	Δ	0	クレゾール石鹸液	0	0	0	0	0	Δ	×	Δ	×	×	L
0	0	0	0	0	×	ヂアミトール	0	Δ	Δ	0	×	Δ	×	Δ	×	×	L
0	0	0	0	0	×	塩化ベンゼトニウム	0	Δ	Δ	0	×	Δ	×	Δ	×	×	L
0	0	0	0	×	×	マスキン液	0	Δ	Δ	0	×	Δ	×	Δ	×	×	L
0	0	0	0	0	×	ハイジール液	0	Δ	Δ	0	Δ	Δ	×	Δ	×	×	
※排泄物に含まれるウイルス等をオゾンで活性化させることは可能です ※○=有効 △=十分な効果が得られない時がある ×=無効																	

機能テスト

劣化特性評価(機能確認)

最大曝露時間で実施

除染 各ガスともに最大濃度

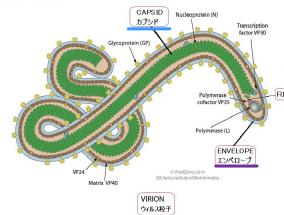

機能確認

·テストプログラムによりPCを24時間連続稼働 (携帯電話は、テストプログラムを5回実行(非連続稼働))

・安定稼働確認と機能確認


-22	19 m n ± 88	## cta 99 44	機能						
ガス	曝露時間	精密器材	キーボード	通信	CPU	LCD	電源		
-1.25.	ゾン 6 時間	PC	0	0	0	0	0		
オゾン		携帯電話	0	0	0	0	0		

実験において、PC・携帯電話の全機能にエラーなし



オゾンの殺菌効果はエボラウイルスに 対応しているか

エボラ・ウィルス

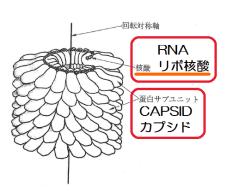


図 1.5-2 タバコモザイクウイルスのらせん対称 型ヌクレオカプシドの模式図 (Caspar と Holmes, 1969 の報告²¹⁾ に基づく)

フィロウィルス科に属するエボラ・ウィルスと オルソミクソウィルス科に属する インフルエンザ・ウィルスは共にエンベロープを有し、 らせん状対称性のカプシドに(-)一本鎖RNAが 内包されております。

エンベロープは宿主細胞に由来する脂質2重膜であり宿主がヒトであれば、形状は違えども材質面では大きく違わないと推定されます。 (※カプシドはウィルス毎に構成は変わるが、基本的にタンパク質である。)

よって、エンベロープとカプシドはオゾンにより分解できると考えて良い。

RNAについては、オゾンにより、神力就子氏のレポート (「オゾンによる核酸の分解に関する研究」) に詳しいが、G(グアニン)がまず分解を受け、その後 U(ウラシル)、C(シトシン)、A(アデニン)、T(チミン)が 分解される。

また、不活化には必ずしもRNA鎖の切断まで必要ではないと 報告されている。

実際のオゾンによるウィルスの不活化は下記の順番で オゾンにより酸化分解されると推定される。

1:エンベロープ \rightarrow 2:カプシド \rightarrow 3:RNA

インフルエンザ・ウィルスがオゾンにより不活化される結果は すでに公開されている。

そして、オゾンによる不活化はワクチンによるそれとは違い 攻撃対象の選択性はそれほど問題とならない。

従って、エボラ・ウイルスに対しても、オゾンによる不活化は 有効であると推定される。

ご提案機材の一覧 諸元表

	機種名	写真	寸法(mm)	重量 (Kg)	オゾン放出量	風量/水量
			幅 (W)	382.5			
	BT-088		奥行(D)	165	8	2500mg/h	2m³/min
			高さ (H)	354.6		約3倍の能力 1/3の時間で隙	≥ sh
			幅(W)	504		1/300時間で限	
オゾンガス	オ ゾ ン BT-088T ガ	対特殊衛生隊仕様▶	奥行(D)	385	40	10000mg/h 50mg/h	9㎡/min
\ 			高さ (H)	1035 (ハハ゛ル 305を含 む)			
			幅(W)	180			
	BT-03		奥行(D)	76.8			
			高さ (H)	200			
			幅(W)	300			
オゾン水	BT-01		奥行(D)	200	12	1.2mg/L	16.5L/min
		22	高さ (H)	350			

ご提案機材の一覧特徴

	機種名	写真	使用方法			
	BT-088		ハンディタイプかつ高濃度オゾン発生 オゾン濃度計とCT積算計を搭載し、設定CT値までの自動 運転と自動停止が可能 およそ30㎡の空間を約30分でCT60を達成することが可能 (諸条件により異なります) (使用想定) 救急車輌、屋外設置テントなどにおいて高濃度オゾンガス による急速除染に使用する。 ※オゾンガスマスクの着用が必要			
オゾンガス	BT-088T	対特殊衛生隊仕様▶	超高濃度オゾンガスと大風量により、広範囲空間をオゾンガスで除染する事が可能。 コントロールパネル(タッチ式)で遠隔操作が可能。 放出オゾン濃度、風量、CT値、運転時間など様々な設定 もコントロールパネルで設定が可能。 防衛省対特殊衛生隊(対特衛)採用モデル (使用想定) 救急車輌と救急隊員の急速オゾン除染(BT-088比) バスなどの広範囲も可能。			
	BT-03	Bactector Os Ourse the standard or standa	小型ハンディオゾンガスモデル オゾンガス濃度計付属で濃度0.1 p p mの自動運転 可能 (使用想定) 救急車輌に標準搭載し常時0.1ppm濃度状態で空 気衛生環境を保つ。			
オゾン水	BT-01	3 3	ベストセラー オゾン水モデル 高濃度オゾン水を豊富な吐水量で生成可能 水道分岐可能(3箇所ほど) (使用方法) 消防署に装備し、防護服の脱衣前に手洗いを行う事で オゾン水による手先のエボラウイルスの除菌を行い、 防護服脱衣時の感染リスクを低減する。			

ご提案機材の一覧(オプション品)

■対オゾンマスク

- ・高濃度のオゾンガスにより無人の室内における滅菌が短時間で可能・オゾン発生方式は無声放電式/高濃度オゾンガス(0.1ppm以上)での作業の場合は対オグンマスク(RT-06)を必ず併用ください。
- 消耗品:吸収缶(約1年 450回使用後交換)

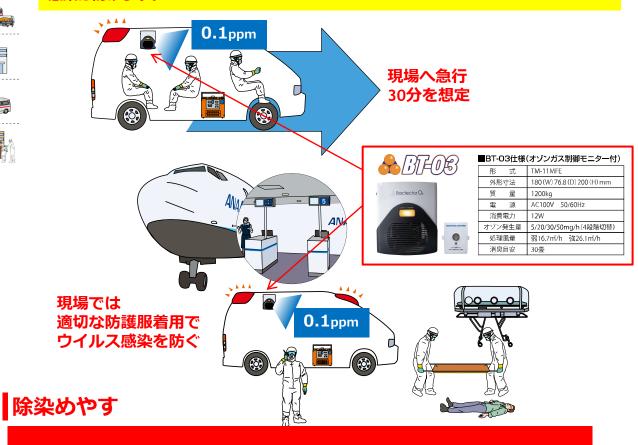
オプション

■オゾンガス除菌・ 除染専用テント

耐オゾン性に優れ、機密性が高く、テント内外でもオペレーション可能

	ファイ音行るファヒーター)
型式	TOM-02HD
測定方式	センサ方式(エレクトロケミカル)
測定範囲	0.00~3.00mg/ℓ(分解能 0.01mg/ℓ)
測定精度	$\pm 7.5\% (0\sim 1 \text{mg}/\ell) \pm 15\% (1\sim 2 \text{mg}/\ell)$
使用環境	温度7~35℃ 湿度0~80%
寸 法	80mm×40mm×35mm(オゾンモニター本体)
重 量	約50g(モニター本体)

感染者の搬送マニュアル 全体フロー


		所要 時間	感染リスク	使 BT-03	用機材 BT-088	設定CT値 BT-088T	BT-01	軽減	スク成率
受電	000 消防署		_					_	_
出動	意車	約 30 分	_	予備除染 CT値 3				-	_
到着	AN ANA	状況により 異なる	0	CT値 3				防護服適切が	I
搬送	高車	約 30 分	0	CT値 3				46%	46%
到着	+***		@	CT値 3	_{車輌内} CT 値 60	_{病院} CT値 60		99.9	99.9
	東	約 30 分	0	CT値 3				46%	46%
待機	○○○ 湘防南		0	CT値 3	_{車輌内} CT 値 60	1	CT値 0.5	99.9	99%

出動・現場到着時 感染リスク 〇

目的:現場に到着し、感染者を確認、搬送準備に入ります

エボラウイルスは、接触・飛沫による感染であり、適切な防護服を着用することで 感染は防げます。

CT値3 = 0.1ppm x 移動時間30min = CT値 3

(財) 北里環境科学センターによる インフルエンザ不活化試験結果より考慮

不活化率	92.9%
オゾンガス濃度	0.1ppm
処理時間(min)	60min(60分)
CT値	6

移動時間30分により CT値を3と仮定

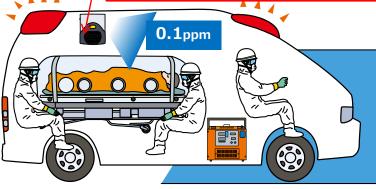
不活化率を約46% と仮定しています

平成21年8月11日 試験実施

感染リスク低減率

46% ※救急車内

現場救急隊員は 適切な防護服着用


指定病院へ搬送時感染リスク

移送中もBT-03の連続運転により、濃度0.1ppm維持します。 隊員・患者共にオゾンマスクは不要で、移送時間30分で CT値3となり、空気中46%のウイルスを不活化します。

指定病院へ急行 30分を想定

除染めやす

CT値3 = 0.1ppm x 移動時間30min = CT値 3

(財) 北里環境科学センターによる インフルエンザ不活化試験結果より考慮

不活化率	92.9%
オゾンガス濃度	0.1ppm
処理時間(min)	60min(60分)
CT値	6

移動時間30分により CT値を3と仮定

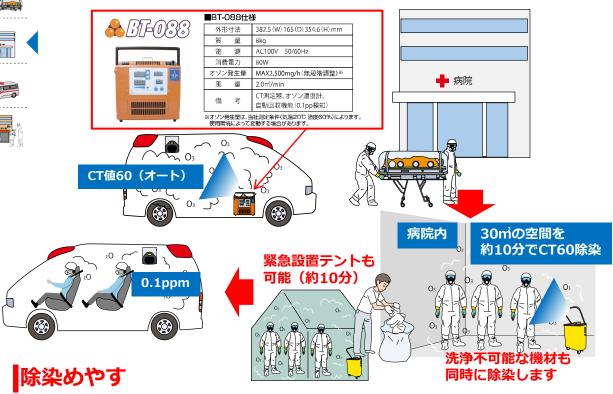
不活化率を約46% と仮定しています

平成21年8月11日 試験実施

感染リスク低減率

46%

指定病院へ到着


感染リスク

目的:感染症の指定病院に到着し、患者を移送します。

この間、救急車内のウイルスをオゾンガスで除染します。

BT-088の高濃度オゾンガスによってCT値60: 不活化率99.7%を想定します

CT値60 = 2ppm x 約30min = CT値 60

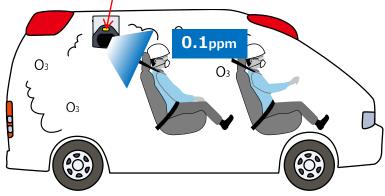
(財) 北里環境科学センターによる インフルエンザ不活化試験結果より考慮

不活化率	99.7%
オゾンガス濃度	0.1ppm
処理時間(min)	180min(3時間)
CT値	18

厚生労働省による ウイルス不活化試験 (CT値60=99.9%) のデータを引用

平成21年8月11日 試験実施

感染リスク低減率



帰署時

感染リスク ○

目的: 移送後の救急車内には到着時の除染CT値60によって99.9%のウイルスが 不活化されていますが、隊員の防護服に付着したウイルスを継続して除染します。 車内のオゾンガス濃度を 0.1ppmとすることで、インフルエンザ・エボラウイルスの 約30%を不活化すると仮定しています。

署への帰還 約30分を想定

除染めやす

CT値3 = 0.1ppm x 移動時間30min = CT値 3

(財) 北里環境科学センターによる インフルエンザ不活化試験結果より考慮

不活化率	92.9%
オゾンガス濃度	0.1ppm
処理時間(min)	60min(60 分)
CT値	6

移動時間30分により CT値を3と仮定

不活化率を約46% と仮定しています

平成21年8月11日 試験実施

感染リスク低減率

帰署後 1

感染リスク○

目的:帰署後、救急車内にて再度BT-088にて高濃度オゾンガスによる除染を行いBT-088の高濃度オゾンガスによってCT値60:不活化率99.7%を想定します。また、帰署隊員数の増加や時間短縮にはBT-088T(088の3倍~5倍の能力)を使用し高効率のオゾンガス除染を行います。

■BT-088仕村	兼				
外形寸法	382.5 (W) 165 (D) 354.6 (H) mm				
質 量	8kg				
電 源	AC100V 50/60Hz				
消費電力	80W				
オゾン発生量	MAX2,500mg/h(無段階調整)※				
風 量	2.0㎡/min				
備 考 CT測定器、オゾン濃度計、 自動回収機能(0.1pp検知)					
※オゾン発生量は、当社測定条件(気温20°C 湿度60%)によります。					

■BT-088T仕	様			
品名	CT測	定器内蔵オゾンガス発生装置	電流値	4.8 A/6.0 A
型式	тм-	1 0 G C T S	吹出風量	8m3/min I 9m3/min
オゾン発生方式	無声放電方式		本体重量	約40 kg
	高	10g/h%	使用温度範囲	0~40°C(結素のないこと)
オゾン発生量 (3段階調節)	ф	6 g / h ₩	内蔵センサ	オゾン・温度センサ
	低	2 g/h %	ヒューズ	1 0 A
電源電圧	A C 1	00V 50/60Hz	温電遮断器	A C 1 D O v 2 O A (漏洩電流 1 5 m A)
消費電力	4 2 0 W/5 2 0 W			は、当社測定条件(気温20°C湿度60%)によります。 て変動する場合があります。

除染めやす

CT値60 = 2ppm x 約30min = CT値 60

(財) 北里環境科学センターによる インフルエンザ不活化試験結果より考慮

不活化率	99.7%
オゾンガス濃度	0.1ppm
処理時間(min)	180min(3時間)
CT値	18

厚生労働省による ウイルス不活化試験 (CT値60=99.9%) のデータを引用

平成21年8月11日 試験実施

感染リスク低減率

帰署後 2

分解剤(1年毎)

乾燥剤(6ヶ月毎)

消耗品

感染リスク ○

目的:帰署後、最も感染リスクが生じる防護服に付着したウイルスに接触する事を 防ぐ為には、オゾン水による除染が必要です。

BT-01のオゾン水で10秒(試験上は5秒)洗浄することでウイルスは99.9%が不活化します。

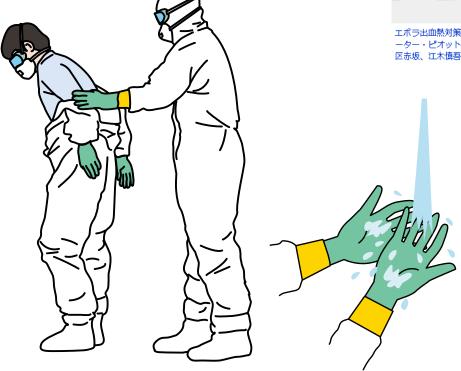
防護服の脱衣時

感染リスク(②

目的: 防護服の脱衣は慣れた者で約10分ほど要します。

オゾン除染を行わない場合は、脱維持に感染した部位が触れてしまい、二次感染を まねく事例が報告されています。

オゾン除染を繰り返している防護服にはウイルスは付着していないと想定できます。


エボラ発見者が警告、最も危険な瞬間 「問題(お防護服を脱ぐ時 だ」

■脱衣の監督を強化

エボラウイルスに接触する危険性が最も高いのは、感染して死亡した人の遺体です。「難し い問題は医療関係者らが防護服を脱ぐ時だ。国境なき医師団(MSF)では、脱衣を監督するよ うにしている」と話しました。

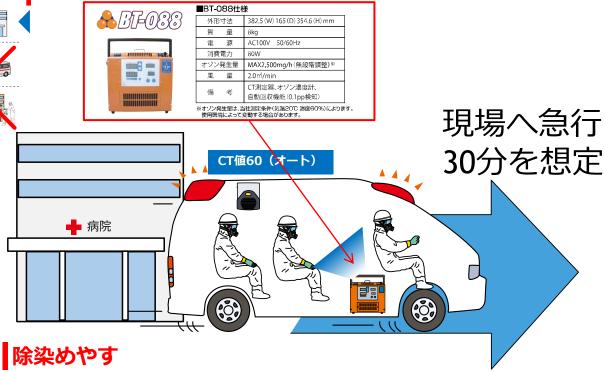
エボラ出血熱対策について語るピ ーター・ピオット博士=東京都港 区赤坂、江木慎吾撮影

感染リスク低減率

オゾンガス 99.9% CT60除染

感染リスク低減率

オゾン水 99.99% CT0.5手洗い除染



目的: パンデミック時は病院搬送後、そのまま継の現場に向かう場合が想定されます。 この間は帰署後のオゾン除染を行う時間はありません。

BT-088の高濃度オゾンガスによってCT値60: 不活化率99.7%を想定します 隊員はオゾンガスマスクを着用します。

CT値60 = 4ppm x 約15min = CT値 60

(財) 北里環境科学センターによる インフルエンザ不活化試験結果より考慮

不活化率	99.7%
オゾンガス濃度	0.1ppm
処理時間(min)	180min(3時間)
CT値	18

厚生労働省による ウイルス不活化試験 (CT値60=99.9%) のデータを引用

平成21年8月11日 試験実施

感染リスク低減率

パンデミック シビアケース マスク・感染防止衣などデスポ製品の 供給不足時の除染・消毒

目的:パンデミック時は、医療従事者に必要なマスクや感染防止衣の供給が不足する場合があり、やむなく継続利用する場合の注意点を考察します。

オゾン除染を行わない場合は、脱維持に感染した部位が触れてしまい、二次感染を まねく事例が報告されています。

オゾン除染を繰り返している防護服にはウイルスは付着していないと想定できます。

日本經濟新聞

医療現場もマスク不足 新型肺炎拡大で品薄常態化

新型コロナ

2020/2/13 11:31 日本経済新聞 電子版

新型コロナウイルスによる肺炎の感染拡大の影響で、市販マスクだけでなく、医療機関でもマスクが不足する事態が起きている。注文の増加に供給が追いつかず、診療所などへの納品の取り消しや遅延が続く。他の感染症も含め、医療従事者を介した感染を防ぐためにはマスクは欠かせず、政府はメーカーの増産に向けた対策を急ぐ。

緊急時の供給不足時における現場対応を仮定しています。 原則として新品利用を推奨しており、決して再利用を 促進しておりません。

パンデミック シビアケース マスク・感染防止衣など資機材の 供給不足時の除染・消毒

オゾンガス除染専用 高気密テントボックス

- **2** BT-088(消防・救急用)、BT-088M(医療機器クラスⅡ)を ボックス内に設置し、<u>BT-088の設定CT値を60に設定</u>する BT-088Mの設定CT値は330に固定されています。
- スタートボタンを押し、オゾンを発生させます。 ボックス内のオゾンCT値はは約3分でCT60になり、CT330も約30分で 達成し、すぐにオゾン回収が始まります。
- オゾン回収が完了する前にマスクを取り出しても問題ありません。 **4** ボックス内の残留オゾンは自然分解します。 ※マスクを取り出す際にオゾンを吸い込まないように注意してください。

パンデミック シビアケース マスク・感染防止衣など資機材の 供給不足時の除染・消毒

ボックスに入らない大きな資機材の再利用を行う場合は ロッカー室、備品室など部屋全体を除染室に設定する、もしくは病室全体を オゾンガスで燻蒸除染/消毒します

医療用ベッド、マットレス 車いすなど

病室全体をCT値330で消毒

感染防止衣、ストレッチャーなど

備品室をCT値60で除染

2020年2月、新型コロナウイルスの市中感染により、市場のマスク供給不足が深刻です。 一般の方だけではなく、病院など平時より必要とする機関でも入荷が不安定であり 病院スタッフへの割り当てが削減され、継続使用を余儀なくされるなど事態は深刻を 極めています。

緊急事態としてマスクを再利用しなければならない場合

マスク供給不足の現状により、今あるマスクを継続使用しなければならない場合、以下の注意点が考えられます。

- ※マスクの再利用を推奨していません。マスクは必ず廃棄・再使用が基本です。
 - ・表面(外部に面している部分)を触らない
 - ・2回以上は使用しない
- ・水で洗っても汚染を広げる場合がある為、洗浄しないほうが良い 弊社の機器を販売したお客様からも、マスク再利用におけるオゾン機器の利用方法 についてお問い合わせも多く、緊急事態としてオゾン機器によるmすく再利用の為の

除染方法を考察しました。

マスク再利用を推奨するものではありません。

必ず新品利用を基本とし、やむを得ない場合のみの緊急措置としてください。 また、オゾンによるコロナウイルス殺菌効果は確立実証されてはいません。 弊社は薬事法を遵守し、誇大広告は行いません。

▶タムラテコおよび代理店様が販売するオゾン発生機

▶除染を行う場所

浴室

外気に面した窓 または換気扇があり 密閉できる小部屋

マスク再利用を推奨するものではありません。

必ず新品利用を基本とし、やむを得ない場合のみの緊急措置としてください。

また、オゾンによるコロナウイルス殺菌効果は確立実証されてはいません。

弊社は薬事法を遵守し、誇大広告は行いません。

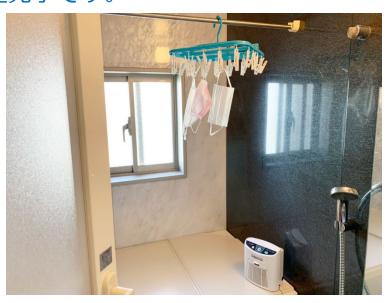
① 浴室の窓を閉め、換気扇・24時間換気を止めます。

② 機器を浴室に設置してください。

※濡れた場所に設置しないでください。 コンセントは延長ケーブルをお使いください

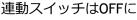
③ 除染するマスクを用意します

※機器の直前に置いたり、機器に直接かぶせる等を行わないでください。 火災や感電の危険があります。



マスク再利用を推奨するものではありません。

必ず新品利用を基本とし、やむを得ない場合のみの緊急措置としてください。 また、オゾンによるコロナウイルス殺菌効果は確立実証されてはいません。 弊社は薬事法を遵守し、誇大広告は行いません。


④ 設置完了です。

⑤ 取扱説明書をご確認いただき、オゾン発生量を最大に してください。濃度センサーは取り外してください

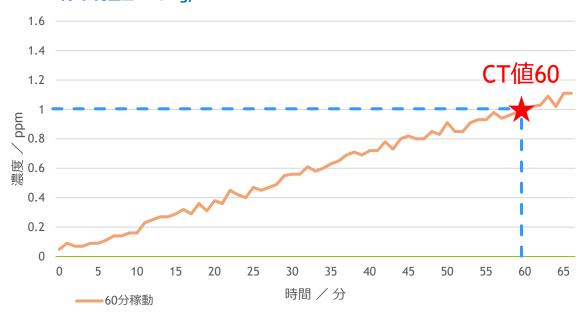
※連続モードに切り替えてください

⑥ オゾンを発生させ、浴室の扉を閉めて退出してください。

■オゾンガス除染目安

【各種ウイルス・細菌の目安】

大陽菌・黄色ブドウ球菌(MRSA)・緑濃菌・ インフルエンザウイルス・ベスト・野兎病菌・ コクシジオイデス真菌・エボラ・天然痘ウイルス等


90%以上除染目安CT値	25
99%以上除染目安CT値	50
99.9%以上除染目安CT値	60

各種ウイルス・細菌の 除染目安として CT60を目標にします。

(注)除染室内環境湿度は60%以上が望ましい。

CT積算計がなくても、CT60=1ppm x 60分ですので 下記の弊社による浴室実験結果より必要時間を算出します

浴室サイズ 1418サイズ/0.76坪/140cm×180cm(奥行き×幅) オゾン発生量 40mg/h

実験積算より検証すると、約2時間でCT60を達成すると 予想されます。

⑦ 120分(2時間)経過したら換気扇を復旧してください

息を止めて 窓を開けましょう

約5分~10分で室内のオゾンは換気されます。 マスクの除染は完了しました。

- ※再利用マスクを他人と使い回す事は厳禁です。
- ※新品交換が可能であれば必ず新品をお使いください

マスク再利用を推奨するものではありません。

必ず新品利用を基本とし、やむを得ない場合のみの緊急措置としてください。 また、オゾンによるコロナウイルス殺菌効果は確立実証されてはいません。 弊社は薬事法を遵守し、誇大広告は行いません。

CT値とは…

殺菌・不活性効果を示す指標として国際的に認めら れているもので、ガス濃度と時間の積(濃度「ppm」 ×時間「min」)を表しており、CT値が高いほどその 効果は増加し、逆にCT値が低いほどその効果は低 下します。

■低濃度オゾンガスによる一般細菌の除菌効果

菌株	未処理の菌数	オゾン処理後の菌数	除菌効果	オゾン処理 条件
大腸菌	1×10°	72	99.99	
黄色プドウ球菌 N20	5×10°	57	99.98	オゾン濃度 1ppm
黄色プドウ球菌 RN2677	5×10°	45	99.99	処理時間 60分
化膿レンサ球菌	3×10⁵	0	100	

昭和薬科大学微生物研究室データ参考

■噴霧吸入したBCGTokyo株に対する殺菌効果

2噴霧吸入させたBCGTokyo株は、「オゾン」の試験ではいずれの実験区分でも菌が検出されなかった。陽性対照群との比較では、少なくとも(空中浮遊状態の抗酸菌を 想定した)10°cfu/min.の噴霧菌量に対して、本装置は完全な除殺菌効果を示した。

実験	BCGTokyo株の	7H10寒天平板培地上での検出菌数	
区分 噴霧菌量と時間		オゾン	陽性対照群
1	4.2×10 ² cfu/min.	0	41
2	2.1×10 ² cfu/30sec.	0	22
3	4.2×10¹cfu/min.	0	2
4	2.1×10 ¹ cfu/30sec.	0	0
5	4.2×10°cfu/min.	0	0
6	2.1×10°cfu/30sec.	0	0

(財)結核予防会 結核研究所

■オゾンガス除菌データ

ウイルス・細菌		除菌方法	CT値(ppm×min)	死滅率(減少率)(%)	
1	674	大腸菌	ガス	60	99.99
2	般細	Staphylococcus pyogenes(化膿レンサ菌)	ガス	60	100
3	菌	Staphylococcus aureusIFO 12732(化膿レンサ菌)	ガス	24	100
4	新	型インフルエンザ(H1N1)	ガス	18	99.7
⑤	新	型インフルエンザ(H5N1)	ガス	60	100
6	No	orevirus(ノロウイルス)	ガス	72	100
7	Bac	cillus cereusIF013494(セレウス菌)	ガス	24	100
8	Vibio	o Parahaemolyticus F012711 (腸炎ビブリオ)	ガス	24	100
9	Saln	nonella typhimuriun IFO14193(サルモネラ菌)	ガス	24	100
100	硫	化水素	ガス	28	100

- ※各給証機関
- ①②昭和薬科大学微生物研究室
- ④北里大学ウイルス科
- ⑤厚生労働省及び消防庁
- ⑥ビジョンバイオ株式会社 ③⑦⑧財団法人日本食品分析センター
- 9岡山工業技術センタ
- 10和歌山市消防本部試験結果

■オゾンガス除染目安

【各種ウイルス・細菌の日安】

大腸菌・黄色ブドウ球菌(MRSA)・緑濃菌・ インフルエンザウイルス・ベスト・野兎病菌 コクシジオイデス真菌・エボラ・天然痘ウイルス等

90%以上除染目安CT値	25
99%以上除染目安CT値	50
99.9%以上除染目安CT値	60

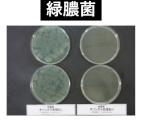
⁽注)除染室内環境温度は60%以上が望ましい。

【除染CT值60処理時間目安】

密閉空間(温度60%以上、気温20°C)にてBT-082を活用の場合オゾン濃度0からのスタート

10m²	10分
20 ㎡	20分
30m²	30分

^{**}BT-082推奨空間は30㎡以内で気密性が高い空間。また、CT値60の処理時間(到達時間)は 環境等(汚れ・気密性・気温・湿度)の条件により異なります。


BT-088M消毒能力評価試験結果(*1)

緑膿菌 MRSA MSSA 3菌種を99%以上低減

